domingo, 15 de mayo de 2011

MODELO OSI


MODELO OSI 

(Open Sistem Interconection)

El modelo de interconexión de sistemas abiertos, también llamado OSI (en inglés open system interconnection) es el modelo de red descriptivo creado por la Organización Internacional para la Estandarización en el año 1984. Es decir, es un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.


Archivo:Pila-osi-es.svg


MODELO DE REFERNCIA OSI
Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar cómo puede estructurarse una "pila" de protocolos de comunicaciones.
El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas:

Capa física

Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
  • Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.
  • Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
  • Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
  • Transmitir el flujo de bits a través del medio.
  • Manejar las señales eléctricas del medio de transmisión, polos en un enchufe, etc.
  • Garantizar la conexión (aunque no la fiabilidad de dicha conexión).

Capa de enlace de datos

Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso al medio, de la deteccion de errores, de la distribución ordenada de tramas y del control del flujo.
Como objetivo o tarea principal, la capa de enlace de datos se encarga de tomar una transmisión de datos ” cruda ” y transformarla en una abstracción libre de errores de transmisión para la capa de red.  Este proceso se lleva a cabo dividiendo los datos de entrada en marcos (también llamados tramas) de datos (de unos cuantos cientos de bytes), transmite los marcos en forma secuencial, y procesa los marcos de estado que envía el nodo destino.

Capa de red

Se encarga de indentificar el enrutamiento existente entre Una o mas redes las unidades de informacion se denominan paquetes, y se pueden clasificar en protocolos enrutables y protocolos de enrutamiento
Enrutables: Viajan con los paquetes (IP, IPX, APPLETALK)
Enrutamiento: Permiten seleccionar las rutas (RIP,IGRP,EIGP,USPF,BGP)
El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.

Capa de transporte

Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a TCP o UDP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión. Trabajan, por lo tanto, con puertos lógicos y junto con la capa red dan forma a los conocidos como Sockets IP:Puerto (192.168.1.1:80).

Capa de sesión

Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole. Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.

Capa de presentación

El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. Por lo tanto, podría decirse que esta capa actúa como un traductor.

Capa de aplicación

Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (Post Office Protocol ySMTP), gestores de bases de datos y servidor de ficheros (FTP), por UDP pueden viajar (DNS y Routing Information Protocol). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.


TRANSMISIÓN DE DATOS
Archivo:Transferencia informacion en el modelo OSI.PNGLa capa de aplicación recibe el mensaje del usuario y le añade una cabecera constituyendo así la PDU de la capa de aplicación. La PDU se transfiere a la capa de aplicación del nodo destino, este elimina la cabecera y entrega el mensaje al usuario.
Para ello ha sido necesario todo este proceso:
  1. Ahora hay que entregar la PDU a la capa de presentación para ello hay que añadirle la correspondiente cabecera ICI y transformarla así en una IDU, la cual se transmite a dicha capa.
  2. La capa de presentación recibe la IDU, le quita la cabecera y extrae la información, es decir, la SDU, a esta le añade su propia cabecera (PCI) constituyendo así la PDU de la capa de presentación.
  3. Esta PDU es transferida a su vez a la capa de sesión mediante el mismo proceso, repitiéndose así para todas las capas.
  4. Al llegar al nivel físico se envían los datos que son recibidos por la capa física del receptor.
  5. Cada capa del receptor se ocupa de extraer la cabecera, que anteriormente había añadido su capa homóloga, interpretarla y entregar la PDU a la capa superior.
  6. Finalmente llegará a la capa de aplicación la cual entregará el mensaje al usuario.

sábado, 9 de abril de 2011

DIFERENCIA ENTRE DIRECCION IP Y MAC ADRESS

DIRECCION IP:

Una dirección IP es una etiqueta numérica que identifica, de manera lógica y jerárquica, a un interfaz (elemento de comunicación/conexión) de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar. Esta dirección puede cambiar 2 ó 3 veces al día; y a esta forma de asignación de dirección IP se denomina dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática), esta, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.
Existe un protocolo para asignar direcciones IP dinámicas llamado DHCP (Dynamic Host Configuration Protocol).

NORMA EIA/TIA 568A Y 568B

NORMA EIA/TIA 568A Y 568B:

El cableado horizontal debe seguir una topología estrella.
Cada toma/conector de telecomunicaciones del área de trabajo debe conectarse a una interconexión en el cuarto de telecomunicaciones.
El cableado horizontal en una oficina debe terminar en un cuarto de telecomunicaciones ubicado en el mismo piso que el área de trabajo servida.
Los componentes eléctricos específicos de la aplicación (como dispositivos acopladores de impedancia) no se instalarán como parte del cableado horizontal; cuando se necesiten, estos componentes se deben poner fuera de la toma/conector de telecomunicaciones.
El cableado horizontal no debe contener más de un punto de transición entre cable horizontal y cable plano.
No se permiten empalmes de ningún tipo en el cableado horizontal
TIA/EIA-568-B tres estándares que tratan el cableado comercial para productos y servicios de telecomunicaciones. Los tres estándares oficiales: ANSI/TIA/EIA-568-B.1-2001, -B.2-2001 y -B.3-2001.
Los estándares TIA/EIA-568-B se publicaron por primera vez en 2001. Sustituyen al conjunto de estándares TIA/EIA-568-A que han quedado obsoletos.
Tal vez la característica más conocida del TIA/EIA-568-B.1-2001 sea la asignación de pares/pines en los cables de 8 hilos y 100 ohmios (Cable de par trenzado). Esta asignación se conoce como T568A y T568B, y a menudo es nombrada (erróneamente) como TIA/EIA-568A y TIA/EIA-568B.


TOPOLOGIAS DE UNA RED

La topología de red: Es la representación geométrica de la relación entre todos los enlaces y los dispositivos que los enlazan entre sí (habitualmente denominados nodos).
Para el día de hoy, existen al menos cinco posibles topologías de red básicas: malla, estrella, árbol, bus y anillo.
topología en malla: Cada dispositivo tiene un enlace punto a punto y dedicado con cualquier otro dispositivo. El término dedicado significa que el enlace conduce el tráfico únicaniente entre los dos dispositivos que conecta.
Una malla ofrece varias ventajas sobre otras topologías de red. En primer lugar, el uso de los enlaces dedicados garantiza que cada conexión sólo debe transportar la carga de datos propia de los dispositivos conectados, eliminando el problema que surge cuando los enlaces son compartidos por varios dispositivos. En segundo lugar, una topología en malla es robusta. Si un enlace falla, no inhabilita todo el sistema.
Topología en Estrella:
En la topología en estrella cada dispositivo solamente tiene un enlace punto a punto dedicado con el controlador central, habitualmente llamado concentrador. Los dispositivos no están directamente enlazados entre sí.
Una topología en estrella es más barata que una topología en malla. En una red de estrella, cada dispositivo necesita solamente un enlace y un puerto de entrada/salida para conectarse a cualquier número de dispositivos.
Este factor hace que también sea más fácil de instalar y reconfigurar. Además, es necesario instalar menos cables, y la conexión, desconexión y traslado de dispositivos afecta solamente a una conexión: la que existe entre el dispositivo y el concentrador.
 
 
topología en árbol:Es una variante de la de estrella. Como en la estrella, los nodos del árbol están conectados a un concentrador central que controla el tráfico de la red. Sin embargo, no todos los dispositivos se conectan directamente al concentrador central. La mayoría de los dispositivos se conectan a un concentrador secundario que, a su vez, se conecta al concentrador central.
El controlador central del árbol es un concentrador activo. Un concentrador activo contiene un repetidor, es decir, un dispositivo HD que regenera los patrones de bits recibidos antes de retransmitidos.
Retransmitir las señales de esta forma amplifica su potencia e incrementa la distancia a la que puede viajar la señal. Los concentradores secundarios pueden ser activos o pasivos. Un concentrador pasivo proporciona solamente una conexión fisica entre los dispositivos conectados.



topologia bus:Una topología de bus es multipunto. Un cable largo actúa como una red troncal que conecta todos los dispositivos en la red.

Los nodos se conectan al bus mediante cables de conexión (latiguillos) y sondas. Un cable de conexión es una conexión que va desde el dispositivo al cable principal. Una sonda es un conector que, o bien se conecta al cable principal, o se pincha en el cable para crear un contacto con el núcleo metálico.
Entre las ventajas de la topología de bus se incluye la sencillez de instalación. El cabletroncal puede tenderse por el camino más eficiente y, después, los nodos se pueden conectar al mismo mediante líneas de conexión de longitud variable. De esta forma se puede conseguir que un bus use menos cable que una malla, una estrella o una topología en árbol.
 topología en anillo: cada dispositivo tiene una línea de conexión dedicada y punto a punto solamente con los dos dispositivos que están a sus lados. La señal pasa a lo largo del anillo en una dirección, o de dispositivo a dispositivo, hasta que alcanza su destino. Cada dispositivo del anillo incorpora un repetidor.Un anillo es relativamente fácil de instalar y reconfigurar. Cada dispositivo está enlazado solamente a sus vecinos inmediatos (bien fisicos o lógicos). Para añadir o quitar dispositivos, solamente hay que mover dos conexiones.

.


domingo, 13 de marzo de 2011

HERRAMIENTAS PARA LA INSTALACIÓN DE UNA RED

HERRAMIENTAS:
Para comenzar con la implementación de una red punto a punto, los elelmentos son:
1-Dos a más fichas RJ45
2-Capuchones para las fichas RJ45
3-Una pinza crimpiadora
4-Pelacables  de 10/100 Mb
9-Cable UTP categoria 5(par trensado)
10-Prencitos de plastico paradicionales para difrerentes medidas
5-Pistola para silicona
6-Cable canal
7-Lan test de red/tester analogico digital
8-Dos tarjetas de red LANa los cables
11-Set destornilladores.

PASOS PARA LA INSTALACIÓN DE UNA RED.

En este trabajo vamos hacer la instalacion de una red punto a punto en una casa de un solo piso, para algunos sea tal ves muy sencillo para otros todo lo contario, para esto tenemos tenemos que hacer una planecion previa y los pasos son los siguientes:
 
Itinerario de la construcion
planeamiento:
  • realizacion del plano
  • superficie que cubrira la red ( cableada o WIFI)
  • relevamiento del harware adecuado
  • estimacion del tiempo de trabajo
Construcion:
  • armado y tendido del cable de red
  • ensamblado del harware de red, tanto las placas de una red de computadoras como la ubicacion fisica del hub, switch, etc.
  • configuracion de softwarey haraware (instalacion de controladores de las placas de red, modem, etc)
  • confuguracion de red ( grupo de trabajo, direcciones IP, compartir archivos e impresoras y otros dispositivos).
  • instalacion de las medidas de seguridad correspondientes (antivirus, firewall, antispyware, etc).
testeo final de la red:
  • comprobar que las computadoras se vean entre si
  • asegurarnos de que ambas posean los mismos privilegios
  • verificar que ambas impresoras y demas perifericos funcionen en red.
  • controlar que las medidas de seguridad esten actualizadas y funciones perfectamente.
  • revisar que las instalaciones hayan quedado correctas, es decir, de acuerdo pactado con el cliente.

miércoles, 9 de marzo de 2011

DIFERENCIAS DE REDES





REDES PUNTO A PUNTO


Se van a ver los recursos implementados los recursos, es decir que se compartirán, en ambos lados de la red.
 Responden a una arquitectura en la que los canales de datos; se comunican únicamente por medio de dos nodos.

Pero están en contra posición a las redes, en esta cada canal de datos se puede usar para comunicarse con diversos nodos.




COMPUTADORA CENTRAL

Es aquella que tiene todos los recursos y se los comparte a otros nodos.
Es una computadora grande, potente y costosa usada principalmente por una gran compañía para el procesamiento de una gran cantidad de datos.

Las computadoras centrales soportan miles de usuarios de manera simultánea que se conectan mediante terminal como el centro de operaciones de muchos terminales virtuales , puede ofrecer la potencia necesaria para que dichas computadoras operen de manera eficiente, pero también la flexibilidad de las redes de computadoras personales.


Red cliente servidor
En la arquitectura C/S el remitente de una solicitud es conocido como cliente. Sus características son:
  • Es quien inicia solicitudes o peticiones, tienen por tanto un papel activo en la comunicación (dispositivo maestro o amo).
  • Espera y recibe las respuestas del servidor.
  • Por lo general, puede conectarse a varios servidores a la vez.
  • Normalmente interactúa directamente con los usuarios finales mediante una interfaz gráfica de usuario.
  • Al contratar un servicio de redes , se tiene que tener en la velocidad de conexión que le otorga al cliente y el tipo de cable que utiliza , por ejemplo : cable de cobre ronda entre 1 ms y 50 ms.
  • Al receptor de la solicitud enviada por el cliente se conoce como servidor. Sus características son:
    • Al iniciarse esperan a que lleguen las solicitudes de los clientes, desempeñan entonces un papel pasivo en la comunicación (dispositivo esclavo).
    • Tras la recepción de una solicitud, la procesan y luego envían la respuesta al cliente.
    • Por lo general, aceptan conexiones desde un gran número de clientes (en ciertos casos el número máximo de peticiones puede estar limitado).
    • No es frecuente que interactúen directamente con los usuarios finales.